Please ensure this form is annexed to the Report to the Standardization Management Board if it has been prepared during a meeting or sent to the IEC Secretariat promptly after its contents have been agreed by the committee.

A. STATE TITLE AND SCOPE OF COMMITTEE

TC 45: “Nuclear instrumentation”.

Scope: To prepare international standards relating to electrical and electronic equipment and systems for instrumentation specific to nuclear applications.

SC 45A: “Instrumentation, control and electrical power systems of nuclear facilities”.

Scope: To prepare standards applicable to the electronic and electrical functions and associated systems and equipment used in nuclear energy generation facilities (nuclear power plants, fuel handling and processing plants, interim and final repositories for spent fuel and nuclear waste) to improve the efficiency, safety and security of nuclear energy generation.

Our standards cover the entire lifecycle of these instrumentation, control and electrical power systems, from conception, through design, manufacture, test, installation, commissioning, operation, maintenance, aging management, modernization and decommissioning.

Our core domain is instrumentation, control and electrical power systems important to safety in nuclear energy generation facilities. The nuclear sector has its own well-developed safety philosophy and methodology; hence our safety publications address the differences from the generic approach and provide directives specific to nuclear energy related facilities with an all-encompassing approach to safety.

According to the TC 45/IAEA agreement our nuclear sector safety and security standards implement principles and terminology of the IAEA safety and security guides. The core domain includes the radiation monitoring instrumentation used for monitoring, control and safety actuation functions.

Our domain includes instrumentation, control and electrical power systems used in nuclear energy generation facilities to manage and control nuclear materials in the frame of international agreements and to safeguard nuclear material and prevent its illicit trafficking. Joint work and/or liaison will be undertaken in case of overlapping functions with radiological and environmental monitoring.

An aspect of our charter is the application of emerging electronic techniques in order to meet nuclear instrumentation and control requirements, particularly computer systems and advances in information processing and control, including artificial intelligence. In this context, one of our strategic tasks is to review and comment on drafts of IAEA safety and security codes in order to maintain consistency between IAEA and IEC documents and identify detailed technical aspects for which IEC standard developments are appropriate and responsive to the market needs.

SC 45B: “Radiation protection instrumentation”

Scope: To prepare standards that address instrumentation used for:

- the measurement of ionizing radiation in the workplace, to the public, and in the environment for radiation protection purposes;
- illicit trafficking detection and identification of radionuclides;
- radiation-based security screening.

B. MANAGEMENT STRUCTURE OF THE COMMITTEE

Technical Committee 45, established in 1959, produces and maintains standards for instrumentation, systems and equipment for many nuclear applications including nuclear energy and the nuclear fuel cycle,
industrial and commercial uses of ionizing radiation, safeguarding special nuclear materials, and environmental and radiation protection.

- The structure of TC 45 is as follows:

<table>
<thead>
<tr>
<th>Label</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcommittees</td>
<td>Instrumentation, control and electrical power systems of nuclear facilities</td>
</tr>
<tr>
<td>45A Instrumentation, control and electrical power systems of nuclear facilities</td>
<td></td>
</tr>
<tr>
<td>45B Radiation protection instrumentation</td>
<td></td>
</tr>
<tr>
<td>Working Groups</td>
<td>Classification - Terminology</td>
</tr>
<tr>
<td>TC 45/WG 1 Classification - Terminology</td>
<td></td>
</tr>
<tr>
<td>TC 45/WG 9 Detectors and systems</td>
<td></td>
</tr>
<tr>
<td>TC 45/WG 18 Mobile unmanned automated systems for nuclear and radiological applications</td>
<td></td>
</tr>
<tr>
<td>Joint working groups</td>
<td>"Cogeneration Combined Heat and Power (CHP)" managed by TC 5 "Steam turbines".</td>
</tr>
<tr>
<td>JWG 16 "Cogeneration Combined Heat and Power (CHP)" managed by TC 5 "Steam turbines".</td>
<td></td>
</tr>
<tr>
<td>JWG 5 "Radionuclide calibrators" managed by SC 62C "Equipment for radiotherapy, nuclear medicine and radiation dosimetry".</td>
<td></td>
</tr>
<tr>
<td>Advisory groups</td>
<td>Chairman's advisory group</td>
</tr>
<tr>
<td>TC 45/AG 15 Chairman's advisory group</td>
<td></td>
</tr>
</tbody>
</table>

As is seen from the above structure, the committee includes two subcommittees. Besides, three working groups, a project team, an advisory group and two joint working groups are directly included into TC 45.

TC 45/AG 15 is the Chairman's Advisory Group (CAG), a TC 45 consultative body. It has been set up with First National Delegates, TC/SC Officers and Working Group Conveners and Project Leaders in order to improve the committee's activity coordination and the liaison strategy. The CAG reviews the SBP at each meeting. The CAG also advises WGs on NWIPs and shares common management issues in order to have a better overall alignment of the activities.

Subcommittee 45A is responsible for the standardization of activities related to electronic and electrical functions and associated systems and equipment used in instrumentation, control and electrical power systems of nuclear facilities. These activities include nuclear power plants, the entire nuclear fuel cycle from mining to processing, reprocessing, and interim and final repositories for spent fuel and nuclear waste.

In addition, SC45A and SC45B are together responsible for standards related to the safeguarding of special nuclear materials, SC45A by the safe use of instrumentation and controls throughout the nuclear fuel cycle, and SC45B with standards for monitoring the management, storage and movement of special nuclear materials in all forms.

The structure of SC 45A is as follows:

<table>
<thead>
<tr>
<th>Label</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working groups</td>
<td>Sensors and measurement techniques</td>
</tr>
<tr>
<td>TC 45/SC 45A/WG 2 Sensors and measurement techniques</td>
<td></td>
</tr>
<tr>
<td>TC 45/SC 45A/WG 3 Instrumentation and control systems: architecture and system specific aspects</td>
<td></td>
</tr>
<tr>
<td>TC 45/SC 45A/WG 5 Special process measurement and radiation monitoring</td>
<td></td>
</tr>
</tbody>
</table>
TC 45/SC 45A/WG 7 Functional and safety fundamentals of instrumentation, control and electrical power systems
TC 45/SC 45A/WG 8 Control rooms
TC 45/SC 45A/WG 9 System performance and robustness toward external stress
TC 45/SC 45A/WG 10 Ageing management of instrumentation, control and electrical power systems in NPP
TC 45/SC 45A/WG 11 Electrical power systems: architecture and system specific aspects

Joint project teams
JPT IEC/IEEE 63160 Nuclear facilities – Instrumentation, control and electrical power systems important to safety – Common cause failure systems analysis and diversity

SC 45B is responsible for standardization activities covering all aspects of radiation protection instrumentation and dosimetry systems, including for the measurement under both normal and accident conditions of external and internal individual exposure and exposure rates, radioactive contamination and radiation characteristics in the workplace, in effluents, the environment and foodstuffs.

As stated above, SC45B together with SC 45A is responsible for standards related to the safeguarding of special nuclear materials developing standards for monitoring the management, storage and movement of special nuclear materials in all forms.

SC45B is also responsible for the development of standards that are applicable to the detection and identification of illicit trafficking of radioactive and nuclear material, as well as security inspection systems using radiation.

The structure of SC 45B is as follows:

<table>
<thead>
<tr>
<th>Label</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC 45/SC 45B/WG 5</td>
<td>Measurements of Environmental Radiation</td>
</tr>
<tr>
<td>TC 45/SC 45B/WG 8</td>
<td>Active pocket and portable dose (rate) meters and monitors and passive dosimetry systems</td>
</tr>
<tr>
<td>TC 45/SC 45B/WG 9</td>
<td>Installed equipment for radiation and activity monitoring in nuclear facilities</td>
</tr>
<tr>
<td>TC 45/SC 45B/WG 10</td>
<td>Radon and radon daughter measuring instruments</td>
</tr>
<tr>
<td>TC 45/SC 45B/WG 15</td>
<td>Illicit trafficking control instrumentation using spectrometry, personnel electronic dosimeter and portable dose rate instrumentation</td>
</tr>
<tr>
<td>TC 45/SC 45B/WG 16</td>
<td>Contamination meters and monitors</td>
</tr>
<tr>
<td>TC 45/SC 45B/WG 17</td>
<td>Security inspection systems using active interrogation with radiation</td>
</tr>
</tbody>
</table>

C. BUSINESS ENVIRONMENT

Requirements of industrial standards shall be minimal and sufficient. They shall not limit the development of new products. We continuously need to ensure that our standards are not just developed for a limited group of specialists but for a wide circle of experts.

The activity of TC45 can be presented in several segments:

- instrumentation, control and electrical power systems for the safe and secure generation of electricity from nuclear energy;
- radiation protection instrumentation for personnel and for the environment;
- instrumentation for industrial and commercial uses of nuclear technology, and
- instrumentation for the safeguarding of special nuclear materials, as well as instrumentation used during nuclear fuel manufacture, storage and processing.
- instrumentation for monitoring the illicit trafficking of radioactive and nuclear material and radionuclide identification.

Instrumentation and control for nuclear energy generation:

The business environment for nuclear power generation is currently changing and imposes some challenges:

- The resurgence of nuclear power worldwide has been tempered and even delayed by the following factors:
 1) The nuclear accident at Fukushima in March 2011 resulted in reevaluating the use of nuclear power in some countries, such as Germany and Japan;
 2) The exploration and production of abundant natural gas by “fracking” or horizontal drilling at least in the United States reduces the competitive potential of nuclear power;
 3) The pandemic caused by the worldwide spread of COVID-19 coronavirus will have a negative impact on all industries, including nuclear power.
- new nuclear power reactor designs must be reviewed and approved before licensing;
- nuclear utilities must have the assets and regulatory approvals in order to proceed with the construction of new power plants;
- expanded new energy needs are connected to the economies of established nuclear countries (such as China, India, Brazil, Russia, Argentina, Pakistan and others) as well as new countries including Belarus, Uzbekistan, Vietnam, Lithuania, United Arab Emirates and Egypt.
- management and refurbishment of aging reactors that are reaching their initial design life and are subjected to life extension programmes determined by routine safety reviews, lessons learned and the implementation of new technical standards;
- some old reactors are being decommissioned;
- issues related to the management, transportation and storage of nuclear fuel and special nuclear materials require special attention, as well as issues related to the safe handling of spent nuclear fuel, which includes transportation from power reactor sites to nuclear storage and repository facilities;
- in addition, new aspects, such as the "loss of infrastructure", were discussed after the Fukushima accident in March 2011, and therefore there was a need for additional standards and revision of some old standards covering the entire nuclear fuel cycle;
- security and cybersecurity issues require further development of new standards;
- recently, in the Zero Emission Challenge to face climate change, nuclear energy was identified to play a major role as a carbon free energy source. In view of that challenge, several countries are considering or have already decided to build new nuclear reactors (i.e. in 2021 France decided the building of 6 new reactors and China the building of up to 150 reactors in the next 15 years);
- in addition, in 2021 a mayor push has been given to the concept of Small Modular Reactors (SMR). Many concepts are being developed, several designs are being seriously considered for design approval and construction and in the Russian Federation one prototype has already been built and deployed.

Radiation protection instrumentation for personnel and environment:

The increased use of nuclear and radiation technologies for meeting industrial and social needs causes the rise of safety expectations to protect people and the environment, in particular:

- safety or ecology related events may have wide repercussions transcending international boundaries (e.g. the Chernobyl and Fukushima events). Nations must combine their efforts to raise the safety of their nuclear facilities to consistent levels;
- credible radiological measurements using appropriate radiation instrumentation should be addressed.
Instrumentation for the safe commercial uses of ionizing radiation and nuclear technology including accelerators of charged particles:

-Ionizing radiation is finding more widespread uses in the fields of non-destructive testing for materials and structures, for gauging moisture, liquid levels and other material thickness and density, flaw and void detection, for industrial imaging, in the irradiation of a variety of foods, in the sterilization of all types of medical supplies. The Technical Committee through the Subcommittees emphasize the safe applications of radiation and nuclear technology.

Instrumentation for safeguarding of special nuclear materials such as Plutonium and Uranium:

- SC45A incorporates safeguarding of special nuclear materials in the standards on nuclear fuel cycle that are developed in this subcommittee.

- SC45B develops instrumentation standards for the detection of illicit trafficking activities that helps prevent radioactive material being used by potential terrorists.

- SC 45B continues to develop and maintain contemporary standards for airborne and environmental monitoring; for portable radiation detection instruments; for monitoring radon and radon progeny; and for radiation dosimeters used by personnel and in the environment.

- SC45B also develops standards for radiation detection systems used for the screening of persons and cargo/vehicles for security and transporting any kind of illicit items through airports, seaports and other border control check points.

There are many companies dealing with the aforesaid business, including many major international companies as well as a large number of system and equipment manufacturers and suppliers from around the world.

D. Market Demand

• Who are the customers of the existing and future publications developed by the TC/SC?

Customers, as a rule, are developers and manufacturers of devices, control and protection systems and equipment, operators of nuclear installations, government and state/provincial regulatory authorities, legislators and testing organizations, many commercial and industrial organizations that use radionuclides (for example, for non-destructive testing, NDT).

• Are the TC/SC publications widely used at the regional/national level?

The published IEC standards are widely used as a basis for national or regional standards and in procurement efforts.

Discussion and efforts are underway to improve conformance between IEC standards, national and regional standards and operational measures or practices.

European Committee for Electrotechnical Standardization (CENELEC) has set up Technical Committees CLC/TC 45AX and CLC/TC 45B for monitoring the work of TC45 and its SCs and endorsing IEC standards produced by TC45 and its SCs as European standards (EN). All those European standards are implemented as national standards in more than 30 European countries - members of CENELEC.

"Most of the standards developed in TC45 and its subcommittees are accepted as CENELEC standards, of which most European countries are members.

Other countries translate a number of TC45 standards into their native languages and transform them into their national standards".

• Are they supporting regulation or used as the basis for contracts?

In Europe, at national level, at least fifteen IEC/SC45A standards are referenced through their EN endorsement by different European countries in the licensing documents and procedures.

Korea Institute of Nuclear Safety (KINS), the regulation research institute of Rep. of Korea, is incorporating some IEC TC45 standards into Korean nuclear regulatory standards.
Some IEC standards are used by reference in American National Standards Institute (ANSI) N42 in the development of US instrument standards. Conversely some ANSI N42 standards are referenced in some IEC standards.

Export contracts from the USA use IEC standards. In addition, an increasing number of IEC standards are referenced by the US Department of Energy, US Nuclear Regulatory Commission and US Department of Homeland Security.

IEC standards are specifically used as reference and technical basis for documents published by the IAEA related to the detection of illicit trafficking of radioactive materials.

- Which are the competing standards developed by other organizations?

TC 45 and its Subcommittees develop standards for the design, construction, performance, testing and calibration of radiation detection instrumentation for all applications. These standards are complementary to ISO/TC 85 standards for the use of such instrumentation. Other relevant organisations, such as the IAEA, are concerned with the establishment and regulation of safety principles and the IAEA also publishes reports on engineering practice.

Given below are brief characterizations of relationships between IEC/TC45 and other international organisations working in related areas.

IEAEC: Close liaison has always been maintained between TC 45 and the IAEA. IEC/SC45A standards use terms of the IAEA safety and security glossaries. Representatives of IEC/SC45A are participating to the NUSSC (Nuclear Safety Standards Committee) and NSGC (Nuclear Security Guidance Committee) and are participating to the I&C Technical Working Group of the Nuclear Division of the IAEA. Recently the IAEA and SC45B have reactivated their liaison A status and are now fully reporting and harmonising their work.

E. Sustainable Development Goals

Indicate the Sustainable Development Goals (SDGs) that are addressed by work within the committee. Indicate each SDG Indicator affected (reference spreadsheet available at https://www.iec.ch/SDG/, and provide specific information about how the committee is addressing the SDG. Consider both direct and indirect impacts of the work of the committee.

- GOAL 1: No Poverty
- GOAL 2: Zero Hunger
- GOAL 3: Good Health and Well-being
- GOAL 4: Quality Education
- GOAL 5: Gender Equality
- GOAL 6: Clean Water and Sanitation
- GOAL 7: Affordable and Clean Energy
- GOAL 8: Decent Work & Economic Growth
- GOAL 9: Industry, Innovation & Infrastructure
- GOAL 10: Reduced Inequality
- GOAL 11: Sustainable Cities and Communities
- GOAL 12: Responsible Consumption & Production
- GOAL 13: Climate Action
- GOAL 14: Life Below Water
- GOAL 15: Life on Land
- GOAL 16: Peace, Justice Strong Institutions
- GOAL 17: Partnerships to achieve the Goals

The standards developed in TC 45 and its subcommittees contribute to improving the safety of power generation at nuclear power plants. Fuel reserves for nuclear power plants significantly exceed the fuel reserves for thermal power plants, while the production process does not release carbon dioxide into the atmosphere. Thus, the standards correspond to goal 7 "Affordable and clean energy" and goal 13 "Climate action". In addition, many standards are related to the achievement of goal 9 "Industry, innovation and infrastructure" (for example, non-destructive testing standards), and goal 17 "Partnerships to achieve the goals", as many of them are developed in collaboration with other organizations (IAEA, IEEE, EC).

F. Trends in Technology and in the Market

If any, indicate the current or expected trends in the technology or in the market covered by the products of your committee.

The rapid change in electronics, information and communications, and other technologies will continue to impact the future work of TC45 particularly in areas such as:

- new types of reactors including advanced gas-cooled reactors, small modular reactors and reactors with increased power capability. These types of reactors are being constructed in some countries and new types of instrumentation, control and electrical systems will be required for these reactors;
- hardware, software, systems, and COTS (Commercial Off The Shelf) items;
- an increasing need for cybersecurity for nuclear power instrumentation and control;
- information exchange (between instruments and control rooms, radio and wireless links, exchange data formats);
- the internet impacts all industries and might need a specific approach for nuclear applications;
- the wide use of X-ray installations in different areas;
- the increased use of robotics in nuclear facilities;
- the application of digital technologies in nuclear instrumentation for data acquisition and processing.

The main trends in the market that will impact our future work are:

- the worldwide need for nuclear power with contemporary matching standards;
- the globalization of the nuclear market;
- the merging of key-players and consortia: manufacturers, utilities etc.;
- the accident at Fukushima NPP in Japan, and worldwide pandemic of COVID-19 negatively impact the nuclear technologies market. Nevertheless, some decrease of the market seems to be of temporary character since the increasing worldwide need in electrical power could not be satisfied without the development of nuclear industry.

G. SYSTEMS APPROACH ASPECTS (SEE DIRECTIVES PART 1 ANNEX SP)

TC 45 will actively continue to cooperate with other organizations both within IEC and outside this organization. A system approach to this activity is in the focus of our committee. The table shown below reflects the relationships between TC 45 and other organizations with the indication of the role of our committee in respect to these organizations (role of a customer or a supplier):

<table>
<thead>
<tr>
<th>Component committees (IEC TC45 – role of a customer)</th>
<th>IEC/TC1</th>
<th>Terminology</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC/TC77</td>
<td>Electromagnetic compatibility</td>
<td></td>
</tr>
<tr>
<td>IAEA</td>
<td>International Atomic Energy Agency</td>
<td></td>
</tr>
<tr>
<td>ICRP</td>
<td>International Commission on Radiological Protection</td>
<td></td>
</tr>
<tr>
<td>ICRU</td>
<td>International Commission on Radiation Units and Measurements</td>
<td></td>
</tr>
<tr>
<td>ISO/TC85</td>
<td>Nuclear energy, nuclear technologies and radiological protection</td>
<td></td>
</tr>
<tr>
<td>ISO/IEC JTC 1/SC 27</td>
<td>Information security, cybersecurity and privacy protection</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System committees (IEC TC45 – role of a supplier)</th>
<th>IEC/TC1</th>
<th>Terminology</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLC/TC45AX</td>
<td>Instrumentation, Control and Electrical System of nuclear Facility</td>
<td></td>
</tr>
<tr>
<td>CLC/TC45B</td>
<td>Radiation Protection Instrumentation</td>
<td></td>
</tr>
<tr>
<td>ISO/TC85</td>
<td>Nuclear energy, nuclear technologies and radiological protection</td>
<td></td>
</tr>
<tr>
<td>IEC/TC8</td>
<td>Systems aspects for electrical energy supply</td>
<td></td>
</tr>
<tr>
<td>IEC/TC56</td>
<td>Dependability</td>
<td></td>
</tr>
<tr>
<td>IEC/TC65</td>
<td>Industrial-process measurement, control and automation</td>
<td></td>
</tr>
</tbody>
</table>
Liaison established:

TC45: TC 45 has internal liaisons with IEC/TC 1; SC 62C and ISO/IEC JTC1. The committee also has a liaison with ISO TC 85 and ISO/TC 85/SC 2. Liaisons of A category exist with the following organisations: EC; IAEA; ICRP; ICRU; WHO.

SC45A: Internal liaisons exist between SC 45A and the following committees and subcommittees: IEC/SC 8C; IEC/TC 56; IEC/TC 65; IEC SC 65A; IEC/TC77; IEC/SC 77C; IEC/TC 112; ISO/IEC JTC 1/SC 27. Liaison category A has been established with the following organisations: IAEA; ICRP; ICRU; IEEE NPEC; ISA 67; OECD/NEA; WNA. Liaison category C have been established between WGA3 and WNA; between WG 7 and WNA; between WG 9 and IEEE NPEC; between WG 9 and ISA 67.

SC45B: Internal liaison exists between SC 45B and IEC/TC 104. The subcommittee has a liaison with ISO/TC 85/SC 2. Liaisons of A category have been established with the following organizations: EC; EFOMP; IAEA; ICRP; ICRU; OIML; WHO.

H. Conformity Assessment

The issue of conformity assessment was discussed at the TC 45 Plenary meeting in Moscow (2013). The common opinion was that there is no sense in the inclusion of IEC TC45/SC45A/SC45B standards into the IEC conformity assessment system for several reasons. The main two of them are as follows:

1. the procedure of the third-party conformity assessment is very expensive and is effectively applied only when a wide world market exists for products covered by IEC standards, that is not the case for TC45/SC45A/SC45B standards;

2. According to ISO/IEC Directives the two types of activities existing within IEC, namely standard development and conformity assessment, should be absolutely independent from each other. As TC45 and its subcommittees are involved into standard development, it is impossible for them to formally develop conformity assessment systems (45/761/RM).

I. 3-5 Year Projected Strategic Objectives, Actions, Target Dates

<table>
<thead>
<tr>
<th>STRATEGIC OBJECTIVES 3-5 YEARS</th>
<th>ACTIONS TO SUPPORT THE STRATEGIC OBJECTIVES</th>
<th>TARGET DATE(S) TO COMPLETE THE ACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>We should continue to be driven by technology needs and recommendations of other authorities, such as the IAEA.</td>
<td>The participation of IEC/SC45A Secretary in the in the activities of IAEA Nuclear Safety Standards Committee (NUSSC) and Nuclear Security Guidance Committee (NSGC) allows the IEC/SC45A to be directly informed of the development, review and revision of IAEA safety and security</td>
<td>Constantly</td>
</tr>
</tbody>
</table>
standards and to formulate observations on those projects.

<table>
<thead>
<tr>
<th>We should be alert to all relevant standards developed by national and regional organisations that are important and can be transformed into IEC standards.</th>
<th>Subcommittee 45A has included into its Work Program the development of several standards jointly with the IEEE organization. Technical committee 45 and Subcommittee 45B have included into their Work Programs the development of several standards jointly with EC-JRC.</th>
<th>Constantly</th>
</tr>
</thead>
<tbody>
<tr>
<td>We shall be cognizant to standardization as connected with non-proliferation and illicit trafficking of nuclear and radioactive materials and produce standards useful for all participating countries.</td>
<td>The development of the corresponding standards.</td>
<td>2023</td>
</tr>
<tr>
<td>The Fukushima accident is to be analyzed and the experience gained should be taken into account in our publications, both new and revised ones.</td>
<td>Revision of some old standards and development of the new ones in order to take into account lessons learned from Fukushima accident.</td>
<td>2024</td>
</tr>
<tr>
<td>Work on harmonization and unification of terms used in the standards of TC 45, SC 45A, SC 45B should be continued.</td>
<td>A revision of the existing Part 395 of IEV will be carried out.</td>
<td>2022</td>
</tr>
</tbody>
</table>

Note: The progress on the actions should be reported in the RSMB.