

STRATEGIC BUSINESS PLAN (SBP)

IEC/COMMITTEE: CISPR	SECRETARIAT: GB	DATE: 2022-11
--------------------------------	---------------------------	-------------------------

Please ensure this form is annexed to the Report to the Standardization Management Board if it has been prepared during a meeting or sent to the IEC Secretariat promptly after its contents have been agreed by the committee.

A. STATE TITLE AND SCOPE OF COMMITTEE

CISPR :International special committee on radio interference

Scope:

Standardization in the field of electromagnetic compatibility (EMC) including:

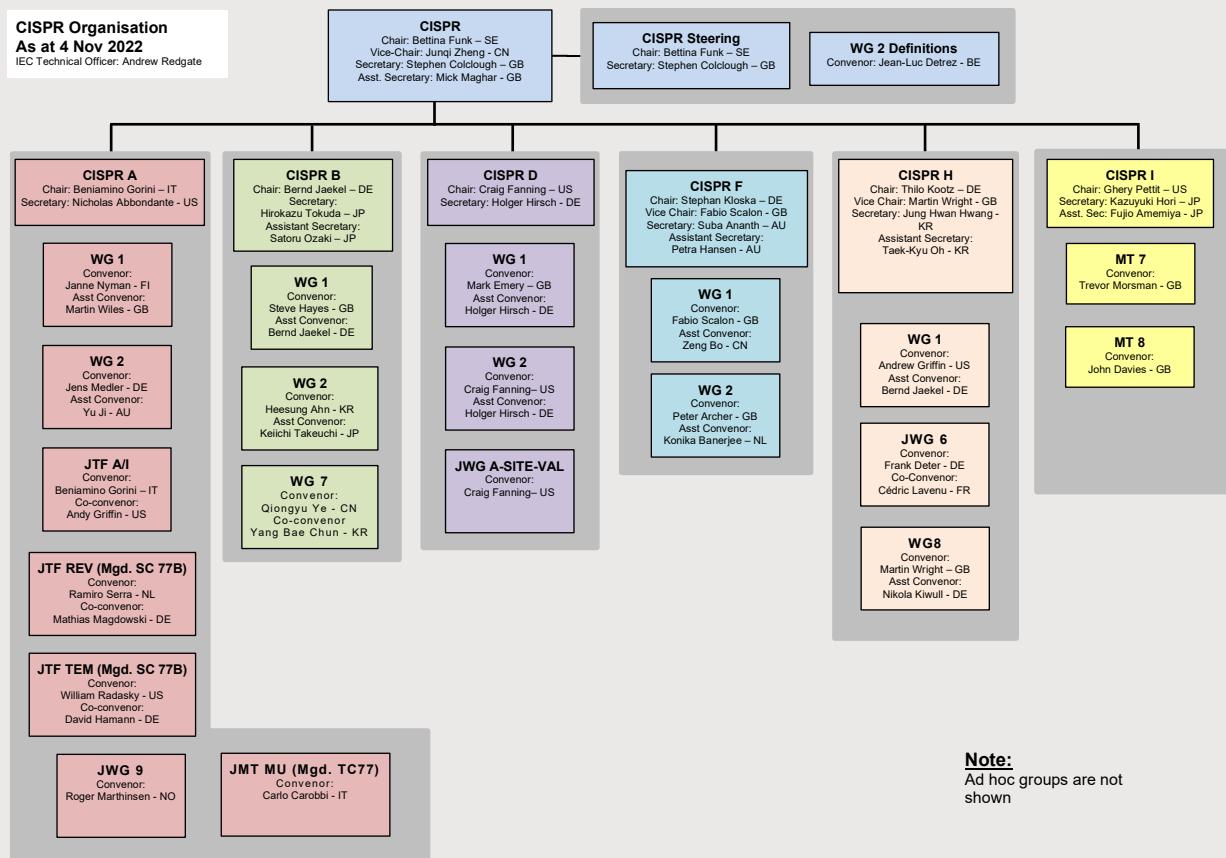
- 1) Protection of radio reception in the range 9 kHz to 400 GHz from interference caused by operation of electrical or electronic products and systems in the electromagnetic environment.
- 2) Measurement instrumentation, facilities, methods and statistical analysis for the measurement of disturbance.
- 3) Limits for radio disturbances caused by electrical or electronic appliances and systems.
- 4) Requirements for the immunity of electrical appliances, multimedia equipment, information technology equipment and sound and television broadcast receiving installations from interference.
- 5) Liaison with IEC Technical Committees that maintain basic standards that apply the prescriptions of methods of measurement of immunity. Test levels for immunity tests are set by CISPR in relevant product standards.
- 6) The consideration jointly with other IEC and ISO committees of the emission and immunity requirements for devices and products where their standards cover EMC requirements which do not match to the respective requirements in CISPR standards.
- 7) Taking into account the impact of human safety issues on disturbance suppression and immunity of electrical products.

I-MEMBERS

CISPR's member constituency includes more than national committees. I-members are shown here as CISPR is a special committee, unique in this aspect. I-members are shown on CISPR dashboard under the liaisons tab. Currently the following organisations are I-members of CISPR:

- CIGRE (International Council on Large Electric Systems)
- EBU (European Broadcasting Union)
- ECMA International
- ETSI (European Telecommunications Standards Institute)
- IARU (International Amateur Radio Union)
- ITU-R (International Telecommunication Union - Radio-communication Sector)
- ITU-T (International Telecommunication Union - Telecommunication Standardization Sector)

CISPR rules are covered in Annex SM of the ISO/IEC Directives Part 1.


For further information about CISPR standards see the [CISPR Guide](#) and the [CISPR dashboard](#).

New or emerging trends in technology

Section E details the trends in technology which the activity of CISPR is concerned with.

B. MANAGEMENT STRUCTURE OF THE COMMITTEE

The structure of CISPR is shown below:

Changes since last review are:

CISPR/A JWG 5 Disbanded

CISPR/A JWG 9 Created

WG and MT Secretaries have been changed to Assistant Convenors.

The structure will next be formally reviewed in October 2023. There are no planned changes to the current structure.

C. BUSINESS ENVIRONMENT

Virtually all electrical products, systems and installations radiate (through the air) or conduct (over the mains and other connected interfaces) unwanted radio frequency emissions. Some products produce intentional emissions through the air or over the mains and other connected interfaces. These emissions may affect radio reception or the functioning of other electrical products, systems and installations. To ensure that such emissions are suitably controlled, it is important that the CISPR continues to retain its function as the focus point for controlling unwanted radio frequency emissions within the entire IEC. Note that CISPR does not address the assessment of the radio performance of radio transmitters/receivers, but CISPR standards can still be used for the assessment of the EMC of equipment containing radio functionality, whether or not the radio function is active.

The technical and economic impact of CISPR activity extends across virtually the whole of the electrical and electronics industries. In particular, legislation of many countries makes use of a wide range of CISPR standards, either by taking parts from the standards, or by making reference to them in full. Consequently, nearly all types of electrical/electronic equipment are being tested according to CISPR standards or to national or regional standards derived from CISPR standards or standards that have significant similarities to show product compliance to the legislation.

Finally, there is an increased demand for radio services and applications, using existing and new technology, which in some cases use frequency bands not previously addressed. Whilst this is not within CISPR control, liaison with organisations which may present new technology issues is seen as a necessary activity. This is due to the control of unintended emissions and disturbances associated with non-radio circuitry and not associated with the primary radio transmitter frequency spectrum (which is not within CISPR's scope) being a key factor in enabling these services to develop.

As a consequence, businesses are affected significantly by the standards that CISPR produces and as such participate in the technical activity of the committee.

D. MARKET DEMAND

CISPR standards are amongst the best-selling publications of the IEC as they are used for a very wide array of products. The CISPR has recognised that products are now being developed that combine several technologies and so has developed multimedia standards which apply for example to information technology and broadcast receivers which may be part of a single product while still retaining product specific standards desired by industry. Considerable interest from National Committees has been generated by the multimedia work. The basic measurement standardization work in CISPR continues to support the testing community, including manufacturers of measuring receivers and accessories (coupling networks, antennas, antenna towers) and test labs, as well as test houses and calibration centres which in general are assessed for competency by accreditation bodies. CISPR has been monitoring the work in IEC SC-77A WG 8 on compatibility levels for public low-voltage power supply networks (the mains). This work has dealt with the frequency range 2 kHz to 150 kHz covering the operation of SmartGrid meters and equipment as well as grid connected power converters. CISPR's interest is in the range above 9 kHz. Consequently, work in CISPR/H is under way to address the development of emission limits and new measurement techniques for disturbance signals on the mains network from 9 kHz up to 150 kHz. This work takes place in CISPR/H/JWG 6 in co-operation with IEC/SC 77A and should be considered by other subcommittees, when the work is finalised.

The CISPR has to continue to maintain and update its standards in the face of new developments in radio services and technology. This challenge has been enthusiastically taken on as witnessed by the intense activity of its subcommittee programmes of work and the active experts in its committees, but there continues to be a need to have more technical experts as jobs change, employer support varies and retirements naturally occur. With the increasing use of the radio spectrum at ever higher frequencies, CISPR is considering the need to control unwanted emissions in the 6 to 40 GHz range. This will entail carrying out development and consultation with regard to limits and their applicability, to test equipment and to test methods. Furthermore, besides the existing requirements for emissions on AC power supply ports, CISPR has recognised the increasing use of DC power supply networks to power equipment. Work has started to update CISPR standards with means to control emissions on ports intended to connect to DC power supply networks or large DC structures.

In order to improve user awareness, and improve sales, the [CISPR Guide](#) was developed, which is available to download at the CISPR dashboard on the IEC website. This is reviewed and updated by the CISPR Steering Committee. Parts of the guide, which gave history of some CISPR standards was considered to be archival information and were removed. What remains is considered to be the most useful to users of CISPR standards. The archival material was not lost and has been transferred to the informative publication CISPR 16-3. The EMC Zone is also used to make information available to users and developers of CISPR standards. Recently a new document was uploaded to the EMC zone which summarises the history and rationale for the different [Definitions of Environments](#) used in CISPR publications.

CISPR has always taken the initiative for standards in the area of EMC, including emission and immunity aspects as they apply to its product committees. The CISPR customers come from all areas of industry (manufacturers), testing organizations, and regulators as CISPR standards have a broad application with product committees meeting regulatory or industry needs. For example, at the regional level, CENELEC has harmonised most of its standards with CISPR to meet the needs of the European Union in support of its EMC Directive. Consequently there is a broad range of participants within the Sub-Committees representing these areas:

- Regulatory authorities,
- Technical universities,
- Research centres,
- Telecommunication organisations,
- Manufacturers and manufacturing organisations of products and test instrumentation,
- EMC testing and calibration institutes
- Practicing test labs
- Consultants that support test labs.
- Test lab accreditation bodies.
- Radio spectrum users

This widely diverse membership helps to create a system approach covering aspects needed to bring products to market that do not present interference to radio services.

E. SUSTAINABLE DEVELOPMENT GOALS

Indicate the Sustainable Development Goals (SDGs) that are addressed by work within the committee. Indicate each SDG Indicator affected (reference spreadsheet available at <https://www.iec.ch/SDG/>, and provide specific information about how the committee is addressing the SDG. Consider both direct and indirect impacts of the work of the committee.

<input type="checkbox"/> GOAL 1: No Poverty	<input type="checkbox"/> GOAL 10: Reduced Inequality
<input type="checkbox"/> GOAL 2: Zero Hunger	<input checked="" type="checkbox"/> GOAL 11: Sustainable Cities and Communities
<input type="checkbox"/> GOAL 3: Good Health and Well-being	<input checked="" type="checkbox"/> GOAL 12: Responsible Consumption & Production
<input type="checkbox"/> GOAL 4: Quality Education	<input checked="" type="checkbox"/> GOAL 13: Climate Action
<input type="checkbox"/> GOAL 5: Gender Equality	<input type="checkbox"/> GOAL 14: Life Below Water
<input type="checkbox"/> GOAL 6: Clean Water and Sanitation	<input type="checkbox"/> GOAL 15: Life on Land
<input type="checkbox"/> GOAL 7: Affordable and Clean Energy	<input type="checkbox"/> GOAL 16: Peace, Justice Strong Institutions
<input type="checkbox"/> GOAL 8: Decent Work & Economic Growth	<input type="checkbox"/> GOAL 17: Partnerships to achieve the Goals
<input checked="" type="checkbox"/> GOAL 9: Industry, Innovation & Infrastructure	

EMC standards have significant impact on the design of products intended to support sustainable development goals (e.g. choice of efficient technologies, materials and components) addressing goal 12. Furthermore, CISPR/D standards directly support and accompany the transformation from fossil fuel vehicles to vehicles with sustainable propulsion systems, addressing goals 9, 11 and 13.

F. TRENDS IN TECHNOLOGY AND IN THE MARKET

Trends in technology and trade that require the CISPR to increase its activity include:

1. Use of radio spectrum by mobile devices above 18 GHz (e.g. 5G Mobile Services)
2. Higher installed density of electrical and electronic products in all environments,
3. Digitalisation of all equipment in general including radio broadcast services,
4. Growth of mobile radio communication services,
5. Integration of radio devices into non-radio products. CISPR is actively reviewing the scope of its publications to cover combined products, but without defining any EMC requirements for the radio functions of the product which are typically covered by regional regulations and/or standards.
6. Mixed use of allocated radio frequency spectrum by mobile radio communication and fixed broadcast services,
7. Increase of shared (co-existence) use of the radio frequency spectrum allocated to primary and secondary radio services. For example, short range radio-communication devices (SRDs) with other wireless devices such as ISM equipment and with wireless power transfer (WPT), especially for charging electric vehicles.
8. Large increase in the number of electric (road) vehicles including the use of wired and wireless battery charging systems.
9. Widespread application of wireless power transfer (WPT) to power or recharge all sorts of non-automotive battery operated equipment and its potential to cause interference.
10. Transition from traditional incandescent and discharge lighting technologies to solid-state (LED) lighting.
11. Application of DC power supply networks.
12. Mixed use of wired interfaces for control, communication, data and powering, e.g. Power over Ethernet and power-line communication,
13. Testing of large/high power equipment and in-situ testing
14. SmartGrid use of 9 kHz to 150 kHz frequency range
15. Transition towards equipment enabling sustainable use of resources (materials and energy)
16. Increasing use of robotic equipment and Artificial Intelligence (AI).

These changes in technology will require:

1. Advances in the development of measurement methods, measurement sites and instrumentation. These measurement considerations have to be associated with limits for emissions and the need to place in perspective the associated product immunity needs using standards developed by TC 77 and test levels selected by the product committee.
2. The extension of the frequency range requiring emission control, and increasing attention to immunity characteristics and in some cases the emission characteristics in the range 9 kHz to 150 kHz.
3. The extension of the frequency range requiring emission control, and increasing attention to immunity characteristics and in some cases the emission characteristics in the range 6 to 40 GHz. This work will only proceed in the CISPR product sub-committees once preparatory work is completed in CISPR/A and CISPR/H.
4. Assessing the effects of the increased probability of radio frequency interference (RFI) or mutual electromagnetic incompatibility in wire-line networks, in particular for broadband communication in wire-line telecom and LV a.c. or d.c. mains networks.
5. Determining the interference potential for newer RF sensitive products that appear in the market on a regular basis, e.g. smart phones, internet ready devices, etc.
6. Re-assessment of emission limits and application of immunity tests. i.e. have interference lessened and have immunity levels increased, respectively or have the opposite occurred.
7. Addressing the increased use of and need for energy efficient products that may pose different EMC characteristics and testing challenges.
8. Dealing with the introduction of such products as LED lighting, power converters and wireless power transfer and the associated potential and existing interference from these devices.
9. The increasing diversity of types and technologies of wired interfaces for control, communication, data and powering (or combinations thereof) requires appropriate and consistent methodology on how disturbances from these interfaces are assessed.
10. Liaisons with the ITU and other TCs, to ensure that the latest radio technology developments are considered in CISPR standards.
11. The consideration of scenarios, where the combination of products cause interference, whilst each single product does not.

Market Trends

The CISPR continues to see the market of the use of the radio frequency spectrum expanding every day and in virtually every way. A similar and parallel expansion is the demand for products in the scope of CISPR standards to be manufactured and operated in an efficient and sustainable manner. With the economic conditions, there is a need to ensure that industry has the option of using the spectrum efficiently and effectively with limited interference to existing radio services and electrical/electronic products. This trend is expected to continue indefinitely.

While these trends continue, the support to address them is diminishing, evidenced by less available funding to work on standards, especially for the travel costs to attend face to face meetings which is considered the most efficient way to come to a consensus. In addition, the number of experts engaged in standards in general is reducing either by early retirement, loss of employment, or simply moving on to new areas of technology application. This is further aggravated by market trends towards products targeted for special applications (not for universal use) for which it is more difficult to find suitable experts, and trends towards low-cost products where less money is set aside for standards work.

At the present time, the CISPR's work program remains strong but the Steering Committee is very aware of the above costs and participation challenges in its reports to the IEC Standardization Management Board. Finally, CISPR takes full advantage of the availability of webinar conferencing hosted by the IEC. Its Steering Committee and other groups use this method for webinars to address actions needing to be taken to keep CISPR work proceeding. This approach eliminates some travel and the need for travel funding.

G. SYSTEMS APPROACH ASPECTS (SEE DIRECTIVES PART 1 ANNEX SP)

For many years the CISPR has adopted a system approach at several levels. Firstly its publications are structured into 3 levels; basic, generic and product-family standards. The generic standards can be applied for new and existing products, thus establishing limits for compliance testing if there are no specific product family standards available. Basic standards provide the measurement methods, test facility requirements and measurement instrumentation specifications including uncertainties for that compliance testing. Secondly CISPR's committee structure is organised to facilitate identification of the CISPR product family standard covering the emission limits and measurement methods suitable for new and existing products, with many liaisons with other technical committees and member organisations with an interest in EMC. It also establishes joint working groups within its organisation and with TC 77 as necessary to bring together the best experts to provide emission and immunity practical solutions. TC77 is a member of the CISPR Steering Committee to ensure this close coordination.

The CISPR offers limits and methods of measurement for other IEC product committees to use in their publications. New basic methods are only developed in CISPR/A when there is clear need for them arising from another CISPR subcommittee or other IEC TC or SC. This is done to not unnecessarily divert experts from their main tasks as outlined in the programs of work. In addition CISPR has representative membership in the Advisory Committee on EMC (ACEC) and contributed to the text of the 2014 edition of [Guide 107](#) (guide to the drafting of EMC publications) which is to be used to ensure the coherence of EMC requirements of product standards which have EMC aspects and are controlled by other TCs in the IEC.

The CISPR also actively encourages other IEC Product Committees to develop EMC requirements within their publications using CISPR standards thus assuring a systems approach for their work.

System evaluation group and system committees:

At this point CISPR does not envision the need to form any system committee or system evaluation group as again its structure and activity noted above is strongly based on the system approach.

Work with ISO:

There is at least one coordination with the ISO automotive committees with that of CISPR/D (automotive EMC). The two committees generally meet together or in sequence. There is no other ISO collaboration expected or needed.

Fora or Consortia:

There are no known fora or consortia that work on similar activities of CISPR as the work of CISPR remains the most relevant for manufacturers, industry, regulators, etc.

H. CONFORMITY ASSESSMENT

CISPR standards are developed and provided to serve the needs of industry for EMC tests on products intended for worldwide marketing and sales without barriers to trade. Application of the CISPR standards by manufacturer or supplier (first party), user, purchaser and administrations (second party), or independent conformity assessment bodies (third party) results in comparable, repeatable and reliable assessment results, independently of the party actually doing the conformity assessment. CISPR considers its standards as integral elements to use in the conformity assessment of products. In this respect, all CISPR standards are fully in line with conformity assessment aspects set out in Part 2 of the ISO/IEC Directives.

CISPR standards are used in the IEC Conformity Assessment Systems, such as the IECEE CB-Scheme. They are however not part of such systems. The CISPR does not have any intention to supplement these IEC Conformity Assessment Systems with any specific rules. Standardisation in CISPR aims at the provision of CISPR standards which are recognized by regulatory authorities around the world for use in well-established conformity assessment systems.

I. 3-5 YEAR PROJECTED STRATEGIC OBJECTIVES, ACTIONS, TARGET DATES

STRATEGIC OBJECTIVES 3-5 YEARS	ACTIONS TO SUPPORT THE STRATEGIC OBJECTIVES	TARGET DATE(S) TO COMPLETE THE ACTIONS
Specification of test instrumentation for emission measurement in the frequency range 18 GHz to 43.5 GHz	CISPR/A Amend CISPR 16-1-1	2025
Clarification in the verification criteria of discontinuous disturbance analysers	CISPR/A Amend CISPR 16-1-1	2025
Provide background on the uncertainty of impedance and voltage-division-factor measurements of AMNs.	CISPR/A Amend CISPR 16-1-2	2024
Uncertainty calculation for current probes calibration	CISPR/A Amend CISPR 16-1-2	2024
To align AAN specifications with latest edition of CISPR 32	CISPR/A Amend CISPR 16-1-2	2024
Basic test facility and test methods for radiated emission measurements in the frequency range of 9 kHz to 30 MHz	CISPR/A Amend CISPR 16-1-4	2023
Provide background on the uncertainty of test site validation in the frequency range 30 to 1000 MHz and 1 to 18 GHz.	CISPR/A Amend CISPR 16-1-4	2025
Specification of test site and antennas for emission measurement in the frequency range 18 GHz to 43.5 GHz	CISPR/A Amend CISPR 16-1-4	2025
Specification for mains cable terminations	CISPR/A Amend CISPR 16-1-4	2023

To add Correction Factors of Broadband Antennas Used for NSA Site Validation and Associated Uncertainty	CISPR/A Amend CISPR 16-1-4	2025
Validation method of antenna calibration sites and reference test sites in the frequency range 18 GHz to 43.5 GHz	CISPR/A Amend CISPR 16-1-5	2025
To add calculable loop antennas	CISPR/A Amend CISPR 16-1-5	2025
Addition of Three-Antenna Method and Standard Field Method loop antenna calibrations	CISPR/A Amend CISPR 16-1-6	2025
Include an Annex on time-domain measurements above 1 GHz to show the advantages and limitations of the method	CISPR/A Amend CISPR 16-1-6	2024
Addition of calculable loop antennas	CISPR/A Amend CISPR 16-1-6	2025
Clarifications of Annex C “Rationale for the equations used in antenna calibration” (update Figure C.10 and Table C.3)	CISPR/A Amend CISPR 16-1-6	2025
Standard antenna method using the principle of Compact-Standard Antenna Method above 1 GHz	CISPR/A Amend CISPR 16-1-6	2025
Calibration method for antennas to be used in the frequency range 18 GHz to 43.5 GHz	CISPR/A Amend CISPR 16-1-6	2025
Use of two homogeneous antenna method	CISPR/A Amend CISPR 16-1-6	2025
Include conducted for measurements of disturbances the generic requirements of “Host systems/modular EUT” and “Arrangement spacing, distances and tolerances” of CISPR 32 (Table D.2)	CISPR/A Amend CISPR 16-2-1	2025
Test methods for radiated emission measurements in the frequency range of 9 kHz to 30 MHz	CISPR/A Amend CISPR 16-2-3	2023
Test methods for radiated emission measurements in the	CISPR/A Amend CISPR 16-2-3	2025

frequency range of 18 GHz to 43.5 GHz		
Further improvements of cable arrangements and cable terminations to improve test reproducibility	CISPR/A Amend CISPR 16-2-3	2025
Include the generic requirements of "Host systems/modular EUT", "Arrangement spacing, distances and tolerances" and requirements to measurement distance/EUT boundary of CISPR 32	CISPR/A Amend CISPR 16-2-3	2025
Clarification of Large Loop Antenna method	CISPR/A Amend CISPR 16-2-3	2025
Include in CISPR 16-3 the rationale for emission measurements and procedures for wired network ports of CISPR 32 Ed. 2.0 (clause G.2) and to combine it with CISPR/I/479/DC	CISPR/A Amend CISPR 16-3	2025
Include the technical theory of the measurement methods using the FAR and OATS/SAC (CIS/A/1349/INF)	CISPR/A Amend CISPR 16-3	2025
General revision of TR 16-3 to remove out of date parts	CISPR/A Amend CISPR 16-3	2025
Uncertainty of radiated emission measurements in the frequency range of 9 kHz to 30 MHz	CISPR/A Amend CISPR 16-4-2	2025
Uncertainty of radiated emission measurements in the frequency range of 18 GHz to 43.5 GHz	CISPR/A Amend CISPR 16-4-2	2025
General revision of measurement instrumentation uncertainty publication (items in CIS/A/1317/DC)	CISPR/A Revise CISPR 16-4-2	2025
General revision on the statistical considerations in the determination of EMC compliance of mass-produced products taking into account CISPR 11/14-1 specifications	CISPR/A Revise CISPR 16-4-3	2025
Development of EUT volume limits for radiated emission measurements at short distances	CISPR/A Amend CISPR 16-4-5	2025

Establishment of essential requirements (measurement methods, measurement setups, operating conditions, limits) when testing power electronic ISM equipment offering wireless power transfer for charging of electric vehicles (WPT EV)	CISPR/B Maintenance of CISPR 11 Ed. 7	2024
Introduction of requirements for robots	CISPR/B Maintenance of CISPR 11 Ed. 6.2	2023
Introduction of requirements for the wired network port	CISPR/B Maintenance of CISPR 11 Ed. 6.2	2023
Introduction of requirements for radiated emissions above 1 GHz (for Group 1 equipment)	CISPR/B Maintenance of CISPR 11 Ed. 6.2	2023
Introduction of requirements for ISM equipment offering wireless power transfer at-a-distance (RBWPT)	CISPR/B PAS XXXXX	2023
Introduction of requirements for ISM equipment offering wireless power transfer at-a-distance (RBWPT)	CISPR/B Maintenance of CISPR 11 Ed. 7	2024
Consideration of radio enabled products in the scope of CISPR 11	CISPR/B Maintenance of CISPR 11 Ed. 6.2	2022
Emission measurements for large size/high power equipment and methods and limits for <i>in situ</i> measurements	CISPR/B Development of CISPR 37	2024
Introduce vehicle radiated emission testing for application during Wireless Charging	CISPR/D Maintenance of CISPR 12	2024
Review of the measurement methods of CISPR 25	CISPR/D Maintenance of CISPR 25 edition 5	2027
Split the document into parts similar to the CISPR 16 series of standards		
Minor amendments to the measurement procedure for electric and hybrid road vehicles for magnetic radiated field measurement for frequencies below 30 MHz.	CISPR/D Amend CISPR 36	2023
Clarify inclusion and testing of radio enabled equipment	CISPR/F Maintenance of CISPR 14-1 Ed. 7.0	2024

Inclusion of domestic and light commercial microwave ovens (once the transfer has been agreed with CISPR B)	CISPR/F Maintenance of CISPR 14-1 Ed. 7.0	2024
Include the jig calibration method for absorbing clamps	CISPR/F Maintenance of CISPR 14-1 Ed. 7.0	2024
Adoption of the upcoming changes on the <30 MHz test methods and equipment (LLAS and 60 cm loop antenna)	CISPR/F Maintenance of CISPR 14-1 Ed. 7.0	2024
Clarify inclusion and testing of radio enabled equipment	CISPR/F Maintenance of CIPSR 14-2 Ed. 3.0	2024
Provide explicit coverage for DC powered equipment other than those operated from battery (e.g. DC mains, USB ports)	CISPR/F Maintenance of CIPSR 14-2 Ed. 3.0	2024
Inclusion of testing radio-enabled products	CISPR/F Maintenance of CISPR 15 Ed. 9.0	2023
Deleting from informative annex all pseudo-regulatory statements (e.g. 80-80 rule)	CISPR/F Maintenance of CISPR 15 Ed. 9.0	2023
Removal of the voltage probe method and alignment of the VP/CP/CVP test methods with the basic CISPR 16 publications.	CISPR/F Maintenance of CISPR 15 Ed. 9.0	2023
Alignment of the setup and methods for conducted testing with the those specified in the basic CISPR 16 publications	CISPR/F Maintenance of CISPR 15 Ed. 9.0	2023
Adoption of the upcoming changes on the <30 MHz test methods and equipment (LLAS and 60 cm loop antenna)	CISPR/F Maintenance of CISPR 15 Ed. 9.0	2023
Develop a reference test setup (host approach) for emission testing of lighting equipment modules (drivers).	CISPR/F Development of CISPR TR 30-3	2024
Definition and assessment of emission limits applicable for Reverberation chambers	CISPR/H Amend IEC 61000-6-3	2025
Definition of generic limits for magnetic field radiated emissions in the frequency range 150 kHz – 30 MHz	CISPR/H Amend IEC 61000-6-3	2023
Definition of generic limits for magnetic field radiated	CISPR/H Amend IEC 61000-6-4	2025

emissions in the frequency range 150 kHz – 30 MHz		
Definition of generic limits for magnetic field radiated emissions in the frequency range 150 kHz – 30 MHz	CISPR/H Amend IEC 61000-6-8	2025
Definition of generic limits for electric field radiated emissions in the frequency range 150 kHz – 30 MHz	CISPR/H Amend IEC 61000-6-3	2025
Definition of generic limits for electric field radiated emissions in the frequency range 150 kHz – 30 MHz	CISPR/H Amend IEC 61000-6-4	2025
Definition of generic limits for electric field radiated emissions in the frequency range 150 kHz – 30 MHz	CISPR/H Amend IEC 61000-6-8	2025
Miscellaneous maintenance items	CISPR/H Amend IEC 61000-6-3	2025
Definition of a model for radiated emissions in the frequency range 6 GHz – 40 GHz	CISPR/H Amend CISPR 16-4-4	2023
Definition of generic limits for radiated emissions in the frequency range 6 GHz – 40 GHz	CISPR/H Amend IEC 61000-6-3, IEC 61000-6-4 and IEC 61000-6-8	2025
Definition of requirements for the DC power supply port	CISPR/H Amend IEC 61000-6-3	2023
Introduction of a height scan for emission measurements above 1 GHz	CISPR/H Amend IEC 61000-6-3	2023
Comprehensive maintenance revision of CISPR limit modelling in CISPR TR 16-4-4	CISPR/H Amend CISPR TR 16-4-4	2023
New publication on Specifications for radio disturbance and immunity measuring apparatus and methods – Statistics of complaints	CISPR/H CISPR TR 16-4-6	2023
General Maintenance	CISPR TR 31	
Definition of generic limits for conducted emissions in the frequency range 9 kHz - 150 kHz	CISPR/H Amend IEC 61000-6-3	2023

Improve CISPR 32 publication. Various changes are being discussed	CISPR/I Edition 3 to CISPR 32	2024
Improve CISPR 35 publication. Various changes are being discussed.	CISPR/I Create CISPR 35 Edition 2	2024
Note: The progress on the actions should be reported in the RSMB.		